Consumer Theory

Assumption 1.1: We will always assume that X is a closed and convex set

 $x \succeq y$: bundle x is at least as good as the bundle y

<u>Axiom 1.1</u>: Completeness: $\forall x, y \in X \Rightarrow x \succeq y$ or $y \succeq x$

<u>Axiom 1.2</u>: Transitivity: $\forall x, y, z \in X$, if $x \succeq y$ and $y \succeq z \Longrightarrow x \succeq z$

Definition 1.1: The relation \succeq on the consumption set X is called a preference relation if it satisfies Axioms 1.1, 1.2 and 1.3.

DEFINITION 1.2 Strict Preference Relation

The binary relation \succ on the consumption set X is defined as follows:

 $\mathbf{x}^1 \succ \mathbf{x}^2$ if and only if $\mathbf{x}^1 \succeq \mathbf{x}^2$ and $\mathbf{x}^2 \not\succeq \mathbf{x}^1$.

The relation \succ is called the strict preference relation induced by \succeq , or simply the strict preference relation when \succeq is clear. The phrase $\mathbf{x}^1 \succ \mathbf{x}^2$ is read, ' \mathbf{x}^1 is strictly preferred to \mathbf{x}^2 '.

DEFINITION 1.3 Indifference Relation

The binary relation \sim on the consumption set X is defined as follows:

$$\mathbf{x}^1 \sim \mathbf{x}^2$$
 if and only if $\mathbf{x}^1 \succeq \mathbf{x}^2$ and $\mathbf{x}^2 \succeq \mathbf{x}^1$.

The relation \sim is called the indifference relation induced by \succeq , or simply the indifference relation when \succeq is clear. The phrase $\mathbf{x}^1 \sim \mathbf{x}^2$ is read, ' \mathbf{x}^1 is indifferent to \mathbf{x}^2 '.

DEFINITION 1.4 Sets in X Derived from the Preference Relation

Let \mathbf{x}^0 be any point in the consumption set, X. Relative to any such point, we can define the following subsets of X:

1. $\succeq (\mathbf{x}^0) \equiv \{\mathbf{x} \mid \mathbf{x} \in X, \mathbf{x} \succeq \mathbf{x}^0\}$, called the 'at least as good as' set. 2. $\preceq (\mathbf{x}^0) \equiv \{\mathbf{x} \mid \mathbf{x} \in X, \mathbf{x}^0 \succeq \mathbf{x}\}$, called the 'no better than' set. 3. $\prec (\mathbf{x}^0) \equiv \{\mathbf{x} \mid \mathbf{x} \in X, \mathbf{x}^0 \succ \mathbf{x}\}$, called the 'worse than' set. 4. $\succ (\mathbf{x}^0) \equiv \{\mathbf{x} \mid \mathbf{x} \in X, \mathbf{x} \succ \mathbf{x}^0\}$, called the 'preferred to' set. 5. $\sim (\mathbf{x}^0) \equiv \{\mathbf{x} \mid \mathbf{x} \in X, \mathbf{x} \sim \mathbf{x}^0\}$, called the 'indifference' set.

<u>Axiom 1.3</u> Continuity: $\forall y_0 \in X$, the sets $\{x : x \succeq y_0\}$ and $\{x : y_0 \succeq x\}$ are closed sets. It follows that $\{x : x \succ y_0\}$ and $\{x : y_0 \succ x\}$ are open sets.

AXIOM 4': Local Non-satiation. For all $\mathbf{x}^0 \in \mathbb{R}^n_+$, and for all $\varepsilon > 0$, there exists some $\mathbf{x} \in B_{\varepsilon}(\mathbf{x}^0) \cap \mathbb{R}^n_+$ such that $\mathbf{x} \succ \mathbf{x}^0$.

AXIOM 4: Strict Monotonicity. For all \mathbf{x}^0 , $\mathbf{x}^1 \in \mathbb{R}^n_+$, if $\mathbf{x}^0 \ge \mathbf{x}^1$ then $\mathbf{x}^0 \succeq \mathbf{x}^1$, while if $\mathbf{x}^0 \gg \mathbf{x}^1$, then $\mathbf{x}^0 \succ \mathbf{x}^1$.

AXIOM 5': Convexity. If $\mathbf{x}^1 \succeq \mathbf{x}^0$, then $t\mathbf{x}^1 + (1 - t)\mathbf{x}^0 \succeq \mathbf{x}^0$ for all $t \in [0, 1]$.

A slightly stronger version of this is the following:

AXIOM 5: Strict Convexity. If $\mathbf{x}^1 \neq \mathbf{x}^0$ and $\mathbf{x}^1 \succeq \mathbf{x}^0$, then $t\mathbf{x}^1 + (1-t)\mathbf{x}^0 \succ \mathbf{x}^0$ for all $t \in (0, 1)$.

Συνάρτηση Χρησιμότητας (Utility function)

DEFINITION 1.5 A Utility Function Representing the Preference Relation \succeq

A real-valued function $u: \mathbb{R}^n_+ \to \mathbb{R}$ is called a utility function representing the preference relation \succeq , if for all \mathbf{x}^0 , $\mathbf{x}^1 \in \mathbb{R}^n_+$, $u(\mathbf{x}^0) \ge u(\mathbf{x}^1) \Longleftrightarrow \mathbf{x}^0 \succeq \mathbf{x}^1$.

DEFINITION 1.5 A Utility Function Representing the Preference Relation \succeq

A real-valued function $u: \mathbb{R}^n_+ \to \mathbb{R}$ is called a utility function representing the preference relation \succeq , if for all \mathbf{x}^0 , $\mathbf{x}^1 \in \mathbb{R}^n_+$, $u(\mathbf{x}^0) \ge u(\mathbf{x}^1) \Longleftrightarrow \mathbf{x}^0 \succeq \mathbf{x}^1$.

THEOREM 1.1Existence of a Real-Valued Function Representing
the Preference Relation \succeq

If the binary relation \succeq is complete, transitive, continuous, and strictly monotonic, there exists a continuous real-valued function, $u: \mathbb{R}^n_+ \to \mathbb{R}$, which represents \succeq .

DEFINITION 1.5 A Utility Function Representing the Preference Relation \succeq

A real-valued function $u: \mathbb{R}^n_+ \to \mathbb{R}$ is called a utility function representing the preference relation \succeq , if for all \mathbf{x}^0 , $\mathbf{x}^1 \in \mathbb{R}^n_+$, $u(\mathbf{x}^0) \ge u(\mathbf{x}^1) \Longleftrightarrow \mathbf{x}^0 \succeq \mathbf{x}^1$.

THEOREM 1.1 Existence of a Real-Valued Function Representing the Preference Relation \succeq

If the binary relation \succeq is complete, transitive, continuous, and strictly monotonic, there exists a continuous real-valued function, $u: \mathbb{R}^n_+ \to \mathbb{R}$, which represents \succeq .

THEOREM 1.2 Invariance of the Utility Function to Positive Monotonic Transforms

Let \succeq be a preference relation on \mathbb{R}^n_+ and suppose $u(\mathbf{x})$ is a utility function that represents it. Then $v(\mathbf{x})$ also represents \succeq if and only if $v(\mathbf{x}) = f(u(\mathbf{x}))$ for every \mathbf{x} , where $f: \mathbb{R} \to \mathbb{R}$ is strictly increasing on the set of values taken on by u.

THEOREM 1.3 Properties of Preferences and Utility Functions

Let \succeq be represented by $u: \mathbb{R}^n_+ \to \mathbb{R}$. Then:

- 1. $u(\mathbf{x})$ is strictly increasing if and only if \succeq is strictly monotonic.
- *2.* $u(\mathbf{x})$ is quasiconcave if and only if \succeq is convex.
- *3.* $u(\mathbf{x})$ is strictly quasiconcave if and only if \succeq is strictly convex.

$$u(x_1, x_2) = x_1^{1/4} x_2^{1/4}$$

Figure 3.5: Level sets of u(x)

Figure 3.4: Function u(x)

Marginal Rate of Substitution

$$MRS_{ij}(x) = \frac{dx_j}{dx_i} = -\frac{\partial u(x)/\partial x_i}{\partial u(x)/\partial x_j} = -\frac{\text{marginal utility of good i}}{\text{marginal utility of good j}}$$

$$B = \{x \setminus x \in \mathbb{R}^n_+ : px \le w\} \qquad \textbf{Budget Set}$$

ASSUMPTION 1.2 Consumer Preferences

The consumer's preference relation \succeq is complete, transitive, continuous, strictly monotonic, and strictly convex on \mathbb{R}^n_+ . Therefore, by Theorems 1.1 and 1.3 it can be represented by a real-valued utility function, u, that is continuous, strictly increasing, and strictly quasiconcave on \mathbb{R}^n_+ .

THEOREM 1.5 Differentiable Demand

Let $x^* \gg 0$ solve the consumer's maximisation problem at prices $p^0 \gg 0$ and income $y^0 > 0.$ If

- *u* is twice continuously differentiable on \mathbb{R}^{n}_{++} ,
- $\partial u(\mathbf{x}^*)/\partial x_i > 0$ for some i = 1, ..., n, and
- the bordered Hessian of u has a non-zero determinant at \mathbf{x}^* ,

then $\mathbf{x}(\mathbf{p}, y)$ *is differentiable at* (\mathbf{p}^0, y^0) *.*

THEOREM 1.6 Properties of the Indirect Utility Function

If $u(\mathbf{x})$ is continuous and strictly increasing on \mathbb{R}^n_+ , then $v(\mathbf{p}, y)$ defined in (1.12) is

- 1. Continuous on $\mathbb{R}^n_{++} \times \mathbb{R}_+$,
- 2. Homogeneous of degree zero in (\mathbf{p}, y) ,
- 3. Strictly increasing in y,
- 4. Decreasing in p,
- 5. Quasiconvex in (\mathbf{p}, y) .

Moreover, it satisfies

6. Roy's identity: If $v(\mathbf{p}, y)$ is differentiable at (\mathbf{p}^0, y^0) and $\partial v(\mathbf{p}^0, y^0)/\partial y \neq 0$, then

$$x_i(\mathbf{p}^0, y^0) = -\frac{\frac{\partial v(\mathbf{p}^0, y^0)}{\partial v(\mathbf{p}^0, y^0)}}{\frac{\partial v(\mathbf{p}^0, y^0)}{\partial y}}, \qquad i = 1, \dots, n.$$

Expenditure function

THEOREM 1.7 Properties of the Expenditure Function

If u(.) is continuous and strictly increasing, then e(p,u) is:

- 1. continuous in p and u
- 2. strictly increasing in u
- 3. increasing in p
- 4. homogeneous of degree one in p
- 5. concave in p

If in addition, u(.) is strictly quasiconcave (unique solution) we have:

6. Shephard's lemma: e(p,u) is differentiable in p at (p^0, u^0) with $p^0 >> 0$ and

$$\frac{\partial e(p^0, u^0)}{\partial p_i} = x_i^h(p^0, u^0)$$

THEOREM 1.8 Relation between UMP and EMP

Suppose that u(.) is a continuous, strictly increasing utility function and that the price vector is p >> 0. We have:

- (i) If x^* is optimal in the UMP when income is w > 0 then x^* is optimal in the EMP when the required utility level is $u(x^*) = v(p, w)$. Moreover, the minimized expenditure level in this EMP is exactly w
- (ii) If x^* is optimal in the EMP when utility level is u > u(0) then x^* is optimal in the UMP when $w = e(p,u) = px^*$. Moreover, the maximized utility level in this UMP is exactly u.

THEOREM 1.8 Some important identities

Let v(p,w) and e(p,u) be the indirect utility function and expenditure function for some consumer whose utility function is continuous and strictly increasing. Then for all p >> 0

- $I_{\cdot} e(p, v(p, w)) = w$
- 2. v(p, e(p, u)) = u

If in addition the utility function is strictly quasi-concave

- 3. $h_i(p, v(p, w)) = x_i(p, w)$
- $A_{i}(p, e(p, u)) = h_{i}(p, u)$

INCOME AND SUBSTITUTION EFFECTS

THEOREM 1.9 The Slutsky Equation

Let x(p,w) be the consumer's Marshallian demand system. Let u^{\uparrow} be the level of utility the consumer achieves at prices P and income W. Then

$$\frac{\partial x_i(p,w)}{\partial p_j} = \frac{\partial h_i(p,u^*)}{\partial p_j} - x_j(p,w) \frac{\partial x_i(p,w)}{\partial w} \qquad i, j = 1, 2, ... n$$

THEOREM 1.10 Negative Own-Substitution Terms

Let h(p,u) be the Hicksian demand for good i. Then

$$\frac{\partial h_i(p,u)}{\partial p_i} \le 0 \qquad i = 1, 2, \dots n$$

THEOREM 1.11 Properties of the Hicksian demand price derivatives

Let $x^{h}(p,u)$ be the consumer's system of Hicksian demands and suppose that the expenditure function e(.) is twice continuously differentiable. Denote

$$D_{p}(h(p,u)) = \begin{bmatrix} \frac{\partial h_{1}(p,u)}{\partial p_{1}} & \frac{\partial h_{1}(p,u)}{\partial p_{2}} & \dots & \frac{\partial h_{1}(p,u)}{\partial p_{n}} \\ \frac{\partial h_{2}(p,u)}{\partial p_{1}} & \frac{\partial h_{2}(p,u)}{\partial p_{2}} & \dots & \frac{\partial h_{2}(p,u)}{\partial p_{n}} \\ \dots & & \\ \frac{\partial h_{n}(p,u)}{\partial p_{1}} & \frac{\partial h_{n}(p,u)}{\partial p_{2}} & \dots & \frac{\partial h_{n}(p,u)}{\partial p_{n}} \end{bmatrix}$$

Then

1.

$$D_{p}(h(p,u)) = D_{p}^{2}(e(p,u)) = \begin{bmatrix} \frac{\partial^{2}e(p,u)}{\partial p_{1}^{2}} & \frac{\partial^{2}e(p,u)}{\partial p_{2}\partial p_{1}} & \dots & \frac{\partial^{2}e(p,u)}{\partial p_{n}\partial p_{1}} \end{bmatrix}$$
$$\dots & \dots & \dots \\ \frac{\partial^{2}e(p,u)}{\partial p_{1}\partial p_{n}} & \frac{\partial^{2}e(p,u)}{\partial p_{2}\partial p_{n}} & \dots & \frac{\partial^{2}e(p,u)}{\partial p_{n}^{2}} \end{bmatrix}$$

2.
$$D_p(h(p,u))$$
 is symmetric $\Rightarrow \frac{\partial h_i(p,u)}{\partial p_j} = \frac{\partial h_j(p,u)}{\partial p_i}$

3. $D_p(h(p,u))$ is negative semi-definite

THEOREM 1.12 Symmetric and Negative Semi-definite Slutsky Matrix

Let x(p,w) be the consumer's Marshallian demand system. Define the *ij* th Slutsky term as

$$\frac{\partial x_i(p,w)}{\partial p_j} + \frac{\partial x_i(p,w)}{\partial w} x_j(p,w)$$

and form the entire $n \times n$ Slutsky matrix as follows

$$S(p,w) = \begin{bmatrix} \frac{\partial x_1(p,w)}{\partial p_1} + x_1(p,w) \frac{\partial x_1(p,w)}{\partial w} & \dots & \frac{\partial x_1(p,w)}{\partial p_n} + x_n(p,w) \frac{\partial x_1(p,w)}{\partial w} \\ & \dots & \\ \frac{\partial x_n(p,w)}{\partial p_1} + x_1(p,w) \frac{\partial x_n(p,w)}{\partial w} & \dots & \frac{\partial x_n(p,w)}{\partial p_n} + x_n(p,w) \frac{\partial x_n(p,w)}{\partial w} \end{bmatrix}$$

Then S(p, w) is symmetric and negative semi-definite.