Consumer Theory

Assumption 1.1: We will always assume that X is a closed and convex set
$x \succsim y:$ bundle x is at least as good as the bundle y

Axiom 1.1: Completeness: $\forall x, y \in X \Rightarrow x \succsim y$ or $y \succsim x$

Axiom 1.2: Transitivity: $\forall x, y, z \in X$, if $x \succsim y$ and $y \succsim z \Rightarrow x \succsim z$

Definition 1.1: T The relation $\underset{\sim}{\succ}$ on the consumption set X is called a preference relation if it satisfies Axioms 1.1, 1.2 and 1.3.

DEFINITION 1.2 Strict Preference Relation

The binary relation \succ on the consumption set X is defined as follows:

$$
\mathbf{x}^{1} \succ \mathbf{x}^{2} \quad \text { if and only if } \quad \mathbf{x}^{1} \succsim \mathbf{x}^{2} \quad \text { and } \quad \mathbf{x}^{2} \succsim \mathbf{x}^{1} .
$$

The relation \succ is called the strict preference relation induced by \succsim, or simply the strict preference relation when \succsim is clear. The phrase $\mathbf{x}^{1} \succ \mathbf{x}^{2}$ is read, \mathbf{x}^{1} is strictly preferred to \mathbf{x}^{2}.

DEFINITION 1.3 Indifference Relation

The binary relation \sim on the consumption set X is defined as follows:

$$
\mathbf{x}^{1} \sim \mathbf{x}^{2} \quad \text { if and only if } \quad \mathbf{x}^{1} \succsim \mathbf{x}^{2} \quad \text { and } \quad \mathbf{x}^{2} \succsim \mathbf{x}^{1} .
$$

The relation \sim is called the indifference relation induced by \succsim, or simply the indifference relation when \succsim is clear. The phrase $\mathbf{x}^{1} \sim \mathbf{x}^{2}$ is read, ' \mathbf{x} 1 is indifferent to \mathbf{x}^{2}.'

DEFINITION 1.4 Sets in X Derived from the Preference Relation

Let \mathbf{x}^{0} be any point in the consumption set, X. Relative to any such point, we can define the following subsets of X :

$$
\begin{aligned}
& \text { 1. } \succsim\left(\mathbf{x}^{0}\right) \equiv\left\{\mathbf{x} \mid \mathbf{x} \in X, \mathbf{x} \succsim \mathbf{x}^{0}\right\} \text {, called the 'at least as good as' set. } \\
& \text { 2. } \precsim\left(\mathbf{x}^{0}\right) \equiv\left\{\mathbf{x} \mid \mathbf{x} \in X, \mathbf{x}^{0} \succsim \mathbf{x}\right\} \text {, called the 'no better than' set. } \\
& \text { 3. } \prec\left(\mathbf{x}^{0}\right) \equiv\left\{\mathbf{x} \mid \mathbf{x} \in X, \mathbf{x}^{0} \succ \mathbf{x}\right\} \text {, called the 'worse than' set. } \\
& \text { 4. } \succ\left(\mathbf{x}^{0}\right) \equiv\left\{\mathbf{x} \mid \mathbf{x} \in X, \mathbf{x} \succ \mathbf{x}^{0}\right\} \text {, called the 'preferred to' set. } \\
& \text { 5. } \sim\left(\mathbf{x}^{0}\right) \equiv\left\{\mathbf{x} \mid \mathbf{x} \in X, \mathbf{x} \sim \mathbf{x}^{0}\right\} \text {, called the 'indifference' set. }
\end{aligned}
$$

Axiom 1.3 Continuity: $\forall y_{0} \in X$, the sets $\left\{x: x \succsim y_{0}\right\}$ and $\left\{x: y_{0} \succsim x\right\}$ are closed sets. It follows that $\left\{x: x \succ y_{0}\right\}$ and $\left\{x: y_{0} \succ x\right\}$ are open sets.

AXIOM 4': Local Non-satiation. For all $\mathbf{x}^{0} \in \mathbb{R}_{+}^{n}$, and for all $\varepsilon>0$, there exists some $\mathbf{x} \in$ $B_{\varepsilon}\left(\mathbf{x}^{0}\right) \cap \mathbb{R}_{+}^{n}$ such that $\mathbf{x} \succ \mathbf{x}^{0}$.

AXIOM 4: Strict Monotonicity. For all $\mathbf{x}^{0}, \mathbf{x}^{1} \in \mathbb{R}_{+}^{n}$, if $\mathbf{x}^{0} \geq \mathbf{x}^{1}$ then $\mathbf{x}^{0} \succsim \mathbf{x}^{1}$, while if $\mathbf{x}^{0} \gg$ \mathbf{x}^{1}, then $\mathbf{x}^{0} \succ \mathbf{x}^{1}$.

AXIOM 5': Convexity. If $\mathbf{x}^{1} \succsim \mathbf{x}^{0}$, then $t \mathbf{x}^{1}+(1-t) \mathbf{x}^{0} \succsim \mathbf{x}^{0}$ for all $t \in[0,1]$.
A slightly stronger version of this is the following:
AXIOM 5: Strict Convexity. If $\mathbf{x}^{1} \neq \mathbf{x}^{0}$ and $\mathbf{x}^{1} \succsim \mathbf{x}^{0}$, then $t \mathbf{x}^{1}+(1-t) \mathbf{x}^{0} \succ \mathbf{x}^{0}$ for all $t \in(0,1)$.

$\Sigma v v \alpha ́ \rho \tau \eta \sigma \eta$ X $\rho \eta \sigma \iota \rho o ́ \tau \eta \tau \alpha \varsigma$ (Utility function)

DEFINITION 1.5 A Utility Function Representing the Preference Relation \succsim

A real-valued function $u: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$ is called a utility function representing the preference relation \succsim, if for all $\mathbf{x}^{0}, \mathbf{x}^{1} \in \mathbb{R}_{+}^{n}, u\left(\mathbf{x}^{0}\right) \geq u\left(\mathbf{x}^{1}\right) \Longleftrightarrow \mathbf{x}^{0} \succsim \mathbf{x}^{1}$.

DEFINITION 1.5 A Utility Function Representing the Preference Relation \succsim

A real-valued function $u: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$ is called a utility function representing the preference relation \succsim, if for all $\mathbf{x}^{0}, \mathbf{x}^{1} \in \mathbb{R}_{+}^{n}, u\left(\mathbf{x}^{0}\right) \geq u\left(\mathbf{x}^{1}\right) \Longleftrightarrow \mathbf{x}^{0} \succsim \mathbf{x}^{1}$.

THEOREM 1.1 Existence of a Real-Valued Function Representing

 the Preference Relation \succsimIf the binary relation \succsim is complete, transitive, continuous, and strictly monotonic, there exists a continuous real-valued function, $u: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$, which represents \succsim.

DEFINITION 1.5 A Utility Function Representing the Preference Relation \succsim

A real-valued function $u: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$ is called a utility function representing the preference relation \succsim, if for all $\mathbf{x}^{0}, \mathbf{x}^{1} \in \mathbb{R}_{+}^{n}, u\left(\mathbf{x}^{0}\right) \geq u\left(\mathbf{x}^{1}\right) \Longleftrightarrow \mathbf{x}^{0} \succsim \mathbf{x}^{1}$.

THEOREM 1.1 Existence of a Real-Valued Function Representing

 the Preference Relation \succsimIf the binary relation \succsim is complete, transitive, continuous, and strictly monotonic, there exists a continuous real-valued function, $u: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$, which represents \succsim.

THEOREM 1.2 Invariance of the Utility Function to Positive Monotonic Transforms

Let \succsim be a preference relation on \mathbb{R}_{+}^{n} and suppose $u(\mathbf{x})$ is a utility function that represents it. Then $v(\mathbf{x})$ also represents \succsim if and only if $v(\mathbf{x})=f(u(\mathbf{x}))$ for every \mathbf{x}, where $f: \mathbb{R} \rightarrow \mathbb{R}$ is strictly increasing on the set of values taken on by u.

THEOREM 1.3 Properties of Preferences and Utility Functions

Let \succsim be represented by $u: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$. Then:

1. $u(\mathbf{x})$ is strictly increasing if and only if \succsim is strictly monotonic.
2. $u(\mathbf{x})$ is quasiconcave if and only if \succsim is convex.
3. $u(\mathbf{x})$ is strictly quasiconcave if and only if \succsim is strictly convex.

$$
u\left(x_{1}, x_{2}\right)=x_{1}^{1 / 4} x_{2}^{1 / 4}
$$

Figure 3.5: Level sets of $u(x)$
Figure 3.4: Function $u(x)$

$$
v\left(x_{1}, x_{2}\right)=x_{1}^{3 / 2} x_{2}^{3 / 2}
$$

Figure 3.7: Level sets of $v(x)$.
Figure 3.6: Function $v(x)$

Marginal Rate of Substitution

$$
M R S_{i j}(x)=\frac{d x_{j}}{d x_{i}}=-\frac{\partial u(x) / \partial x_{i}}{\partial u(x) / \partial x_{j}}=-\frac{\text { marginal utility of good } \mathrm{i}}{\text { marginal utility of good } \mathrm{j}}
$$

Utility Maximization Problem

$$
B=\left\{x \backslash x \in \mathbb{R}_{+}^{n}: p x \leq w\right\} \quad \text { Budget Set }
$$

Utility Maximization Problem

Utility Maximization Problem

ASSUMPTION 1.2 Consumer Preferences

The consumer's preference relation \succsim is complete, transitive, continuous, strictly monotonic, and strictly convex on \mathbb{R}_{+}^{n}. Therefore, by Theorems 1.1 and 1.3 it can be represented by a real-valued utility function, u, that is continuous, strictly increasing, and strictly quasiconcave on \mathbb{R}_{+}^{n}.

Utility Maximization Problem

THEOREM 1.5 Differentiable Demand

Let $\mathbf{x}^{*} \gg \mathbf{0}$ solve the consumer's maximisation problem at prices $\mathbf{p}^{0} \gg \mathbf{0}$ and income $y^{0}>0$. If

- u is twice continuously differentiable on \mathbb{R}_{++}^{n},
- $\partial u\left(\mathbf{x}^{*}\right) / \partial x_{i}>0$ for some $i=1, \ldots, n$, and
- the bordered Hessian of u has a non-zero determinant at \mathbf{x}^{*},
then $\mathbf{x}(\mathbf{p}, y)$ is differentiable at $\left(\mathbf{p}^{0}, y^{0}\right)$.

THEOREM 1.6 Properties of the Indirect Utility Function

If $u(\mathbf{x})$ is continuous and strictly increasing on \mathbb{R}_{+}^{n}, then $v(\mathbf{p}, y)$ defined in (1.12) is

1. Continuous on $\mathbb{R}_{++}^{n} \times \mathbb{R}_{+}$,
2. Homogeneous of degree zero in (\mathbf{p}, y),
3. Strictly increasing in y,
4. Decreasing in \mathbf{p},
5. Quasiconvex in (\mathbf{p}, y).

Moreover, it satisfies
6. Roy's identity: If $v(\mathbf{p}, y)$ is differentiable at $\left(\mathbf{p}^{0}, y^{0}\right)$ and $\partial v\left(\mathbf{p}^{0}, y^{0}\right) / \partial y \neq 0$, then

$$
x_{i}\left(\mathbf{p}^{0}, y^{0}\right)=-\frac{\partial v\left(\mathbf{p}^{0}, y^{0}\right) / \partial p_{i}}{\partial v\left(\mathbf{p}^{0}, y^{0}\right) / \partial y}, \quad i=1, \ldots, n
$$

Expenditure function

(b)

THEOREM 1.7 Properties of the Expenditure Function

If $u($.$) is continuous and strictly increasing, then e(p, u)$ is:

1. continuous in p and u
2. strictly increasing in u
3. increasing in p
4. homogeneous of degree one in p
5. concave in p

If in addition, $u($.$) is strictly quasiconcave (unique solution) we have:$
6. Shephard's lemma: $e(p, u)$ is differentiable in p at $\left(p^{0}, u^{0}\right)$ with $p^{0} \gg 0$ and

$$
\frac{\partial e\left(p^{0}, u^{0}\right)}{\partial p_{i}}=x_{i}^{h}\left(p^{0}, u^{0}\right)
$$

THEOREM 1.8 Relation between UMP and EMP

Suppose that u(.) is a continuous, strictly increasing utility function and that the price vector is $p \gg 0$. We have:
(i) If x^{*} is optimal in the UMP when income is $w>0$ then x^{*} is optimal in the EMP when the required utility level is $u\left(x^{*}\right)=v(p, w)$. Moreover, the minimized expenditure level in this EMP is exactly w
(ii) If x^{*} is optimal in the EMP when utility level is $u>u(0)$ then x^{*} is optimal in the UMP when $w=e(p, u)=p x^{*}$. Moreover, the maximized utility level in this UMP is exactly u.

THEOREM 1.8 Some important identities

Let $v(p, w)$ and $e(p, u)$ be the indirect utility function and expenditure function for some consumer whose utility function is continuous and strictly increasing. Then for all $p \gg 0$

$$
\text { 1. } e(p, v(p, w))=w
$$

2. $v(p, e(p, u))=u$

If in addition the utility function is strictly quasi-concave

$$
\begin{aligned}
& \text { 3. } h_{i}(p, v(p, w))=x_{i}(p, w) \\
& \text { 4. } x_{i}(p, e(p, u))=h_{i}(p, u)
\end{aligned}
$$

INCOME AND SUBSTITUTION EFFECTS

INCOME AND SUBSTITUTION EFFECTS

THEOREM 1.9 The Slutsky Equation

Let $x(p, w)$ be the consumer's Marshallian demand system. Let u^{*} be the level of utility the consumer achieves at prices p and income \mathcal{W}. Then

$$
\frac{\frac{\partial x_{i}(p, w)}{\partial p_{j}}}{T_{T E}}=\frac{\frac{\partial h_{i}\left(p, u^{*}\right)}{\partial p_{j}}-x_{j}(p, w) \frac{\partial x_{i}(p, w)}{\partial w}}{I E} \quad i, j=1,2, \ldots n
$$

THEOREM 1.10 Negative Own-Substitution Terms

Let $h(p, u)$ be the Hicksian demand for good i. Then

$$
\frac{\partial h_{i}(p, u)}{\partial p_{i}} \leq 0 \quad i=1,2, \ldots n
$$

THEOREM 1.11 Properties of the Hicksian demand price derivatives

Let $x^{h}(p, u)$ be the consumer's system of Hicksian demands and suppose that the expenditure function $e($.$) is twice continuously differentiable.$

Denote

$$
D_{p}(h(p, u))=\left[\begin{array}{cccc}
\frac{\partial h_{1}(p, u)}{\partial p_{1}} & \frac{\partial h_{1}(p, u)}{\partial p_{2}} & \ldots & \frac{\partial h_{1}(p, u)}{\partial p_{n}} \\
\frac{\partial h_{2}(p, u)}{\partial p_{1}} & \frac{\partial h_{2}(p, u)}{\partial p_{2}} & \ldots & \frac{\partial h_{2}(p, u)}{\partial p_{n}} \\
\ldots & & & \\
\frac{\partial h_{n}(p, u)}{\partial p_{1}} & \frac{\partial h_{n}(p, u)}{\partial p_{2}} & \ldots & \frac{\partial h_{n}(p, u)}{\partial p_{n}}
\end{array}\right]
$$

Then
1 .

$$
D_{p}(h(p, u))=D_{p}^{2}(e(p, u))=\left[\begin{array}{cccc}
\frac{\partial^{2} e(p, u)}{\partial p_{1}{ }^{2}} & \frac{\partial^{2} e(p, u)}{\partial p_{2} \partial p_{1}} & \ldots & \frac{\partial^{2} e(p, u)}{\partial p_{n} \partial p_{1}} \\
\ldots & \ldots & \ldots & \ldots \\
\frac{\partial^{2} e(p, u)}{\partial p_{1} \partial p_{n}} & \frac{\partial^{2} e(p, u)}{\partial p_{2} \partial p_{n}} & \ldots & \frac{\partial^{2} e(p, u)}{\partial p_{n}{ }^{2}}
\end{array}\right]
$$

2. $D_{p}(h(p, u))$ is symmetric $\Leftrightarrow \frac{\partial h_{i}(p, u)}{\partial p_{j}}=\frac{\partial h_{j}(p, u)}{\partial p_{i}}$
3. $D_{p}(h(p, u))$ is negative semi-definite

THEOREM 1.12 Symmetric and Negative Semi-definite Slutsky Matrix

Let $x(p, w)$ be the consumer's Marshallian demand system. Define the ij th Slutsky term as

$$
\frac{\partial x_{i}(p, w)}{\partial p_{j}}+\frac{\partial x_{i}(p, w)}{\partial w} x_{j}(p, w)
$$

and form the entire $n \times n$ Slutsky matrix as follows

$$
S(p, w)=\left[\begin{array}{ccc}
\frac{\partial x_{1}(p, w)}{\partial p_{1}}+x_{1}(p, w) \frac{\partial x_{1}(p, w)}{\partial w} & \ldots & \frac{\partial x_{1}(p, w)}{\partial p_{n}}+x_{n}(p, w) \frac{\partial x_{1}(p, w)}{\partial w} \\
\ldots & \ldots & \\
\frac{\partial x_{n}(p, w)}{\partial p_{1}}+x_{1}(p, w) \frac{\partial x_{n}(p, w)}{\partial w} & \ldots & \frac{\partial x_{n}(p, w)}{\partial p_{n}}+x_{n}(p, w) \frac{\partial x_{n}(p, w)}{\partial w}
\end{array}\right]
$$

Then $S(p, w)$ is symmetric and negative semi-definite.

